Wednesday 11 December 2013

Houses: smarter than the policy?

Following on from last week’s post focusing on community renewables, I have down-scaled again and considered renewables and sustainability at the building/home level. This also follows on from the controversy surrounding the effectiveness of the UK’s Green Deal policy which aims to effectively provide loans for energy efficiency measures such as insulation or solar panels. The number of households partaking in this scheme is vastly disputed between orders of magnitude, ranging from hundreds to hundreds of thousands. Therefore I came to wonder about and consider the feasibility of the government aim to achieve carbon zero homes to all new builds by 2016. There is vast agreement within the building community that this aim will not be achieved as the institutional framework and supply chain innovations just aren’t in place to make the extra investments worthwhile (Osmani and O’Reilly, 2009). However, if this was somehow achieved by 2016, this would go a long way to contribute to the UK’s climate change mitigation strategy and specifically help towards achieving the ambitious 80% emissions cut targeted for 2050. Currently, housing and building heating and running accounts for approx. 27% of the UK’s emissions, therefore if these buildings became self-sufficient, this would clearly be a substantial overall reduction, and therefore have significant positive ramifications for the environment and the UK’s position in global climate politics.

There are three concepts associated with sustainable housing (Seyfang, 2010):
1) High tech method – including innovations such as ‘smart houses’, using modern construction methods which monitor and adjust energy needs in the home.

2) Low tech method – off grid dwellings – utilising materials such as recycled resources and waste.

3)Shared neighbourhood facilities – such as laundry rooms and gardens, this cuts resource use and improves social capital.

The first method, the high tech route is most widely applied so far as this also includes retrofitting which has been the most common method to improve house sustainability. However, even these techniques which are so often referred to in political dialogue (especially through the Green Deal) as having successful uptake rates, are only being applied by ‘green’ building companies and not being accepted by everyday building contractors as they are seen as too risky and uncertain to justify the initial upfront costs (Seyfang,2010).

The aim of zero carbon homes by 2016 was set in 2006 along with the Code for Sustainable Homes which aims to increase regulations and requirements incrementally up to 2050. This works by awarding a level rating to houses which achieve certain thresholds in 9 categories (Communities and Local Gov., 2006):
1) Energy and CO2

2) Water

3) Materials

4) Surface water run-off

5) Waste

6) Pollution

7) Health and well-being

8) Management

9) Ecology

The house/building is rated through a points system per category and if it meets or exceeds the requirements then it is awarded a ‘level’, between 1 – 6 depending on the standard of sustainability measures. For example, for a level 4 code rating, emissions must be at least 44% lower than building regulations standard (McManus et al., 2010).

I believe that in theory this code could be effective if the drivers behind the initiative were stronger, therefore ensuing confidence in the technology which would encourage construction companies to invest in building more sustainable homes. This broadens out to the larger concept of the need for a secure and confidence-building nationwide energy policy which doesn’t change on a whim and has long term aims to encourage longer term thinking and investment.

The drivers currently, are:
1) BUSINESS: the notion of corporate social responsibility is significant as construction companies are some of the largest businesses in the UK and when the 20 largest companies were surveyed, 65% of them had a corporate sustainability policy in place.

2) CULTURAL: increasing desire among the general population to lead more sustainable lives, customer demand could help shift the type of supply.

3) LEGISLATION: the main driver currently, through the Code for Sustainable Homes.

However, the barriers to the implementation of the code are currently too high to prevent widespread action. These barriers are threefold. Firstly, technical and design barriers, mainly regarding small scale renewable energy which is perceived as unreliable. Secondly, the cultural barrier of unwillingness to implement more experimental designs to include and integrate renewable energy. And thirdly, the perceived increased costs of this implementation and the costs of ultimately breaking the economic viability barrier of this technology (Osmani and O’Reilly, 2009).

Despite these barriers I believe that the legislation is sound, and is suitably long term (up to 2050) to provide sufficient impetus to the construction industry to implement self-sustaining homes. However, my criticism would be that there is insufficient economic incentives from government and a good way to initiate this would be to incorporate RE into social housing to show how the industry can have confidence in the technology. But fundamentally, the UK needs a comprehensive and unchanging energy policy to provide confidence in the requirements of climate change mitigation and energy security in the long term, irrespective of political ideals. This will give the holistic basis to ensure the innovations required to remove the economic and cultural barriers currently associated with sustainable and zero-carbon homes.

No comments:

Post a Comment